3.828 \(\int \frac{x^{13}}{(a+b x^4)^2 \sqrt{c+d x^4}} \, dx\)

Optimal. Leaf size=191 \[ \frac{a^{3/2} (5 b c-4 a d) \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{4 b^3 (b c-a d)^{3/2}}-\frac{(4 a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{4 b^3 d^{3/2}}+\frac{x^2 \sqrt{c+d x^4} (b c-2 a d)}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b \left (a+b x^4\right ) (b c-a d)} \]

[Out]

((b*c - 2*a*d)*x^2*Sqrt[c + d*x^4])/(4*b^2*d*(b*c - a*d)) + (a*x^6*Sqrt[c + d*x^4])/(4*b*(b*c - a*d)*(a + b*x^
4)) + (a^(3/2)*(5*b*c - 4*a*d)*ArcTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(4*b^3*(b*c - a*d)^(3/
2)) - ((b*c + 4*a*d)*ArcTanh[(Sqrt[d]*x^2)/Sqrt[c + d*x^4]])/(4*b^3*d^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.365462, antiderivative size = 191, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {465, 470, 582, 523, 217, 206, 377, 205} \[ \frac{a^{3/2} (5 b c-4 a d) \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{4 b^3 (b c-a d)^{3/2}}-\frac{(4 a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{4 b^3 d^{3/2}}+\frac{x^2 \sqrt{c+d x^4} (b c-2 a d)}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b \left (a+b x^4\right ) (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[x^13/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]

[Out]

((b*c - 2*a*d)*x^2*Sqrt[c + d*x^4])/(4*b^2*d*(b*c - a*d)) + (a*x^6*Sqrt[c + d*x^4])/(4*b*(b*c - a*d)*(a + b*x^
4)) + (a^(3/2)*(5*b*c - 4*a*d)*ArcTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(4*b^3*(b*c - a*d)^(3/
2)) - ((b*c + 4*a*d)*ArcTanh[(Sqrt[d]*x^2)/Sqrt[c + d*x^4]])/(4*b^3*d^(3/2))

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{13}}{\left (a+b x^4\right )^2 \sqrt{c+d x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^6}{\left (a+b x^2\right )^2 \sqrt{c+d x^2}} \, dx,x,x^2\right )\\ &=\frac{a x^6 \sqrt{c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (3 a c-2 (b c-2 a d) x^2\right )}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^2\right )}{4 b (b c-a d)}\\ &=\frac{(b c-2 a d) x^2 \sqrt{c+d x^4}}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}+\frac{\operatorname{Subst}\left (\int \frac{-2 a c (b c-2 a d)-2 (b c-a d) (b c+4 a d) x^2}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^2\right )}{8 b^2 d (b c-a d)}\\ &=\frac{(b c-2 a d) x^2 \sqrt{c+d x^4}}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}+\frac{\left (a^2 (5 b c-4 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^2\right )}{4 b^3 (b c-a d)}-\frac{(b c+4 a d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x^2}} \, dx,x,x^2\right )}{4 b^3 d}\\ &=\frac{(b c-2 a d) x^2 \sqrt{c+d x^4}}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}+\frac{\left (a^2 (5 b c-4 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x^2}{\sqrt{c+d x^4}}\right )}{4 b^3 (b c-a d)}-\frac{(b c+4 a d) \operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x^2}{\sqrt{c+d x^4}}\right )}{4 b^3 d}\\ &=\frac{(b c-2 a d) x^2 \sqrt{c+d x^4}}{4 b^2 d (b c-a d)}+\frac{a x^6 \sqrt{c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}+\frac{a^{3/2} (5 b c-4 a d) \tan ^{-1}\left (\frac{\sqrt{b c-a d} x^2}{\sqrt{a} \sqrt{c+d x^4}}\right )}{4 b^3 (b c-a d)^{3/2}}-\frac{(b c+4 a d) \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{4 b^3 d^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.365008, size = 150, normalized size = 0.79 \[ \frac{b x^2 \sqrt{c+d x^4} \left (\frac{a^2}{\left (a+b x^4\right ) (a d-b c)}+\frac{1}{d}\right )+\frac{a^{3/2} (5 b c-4 a d) \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{(b c-a d)^{3/2}}-\frac{(4 a d+b c) \log \left (\sqrt{d} \sqrt{c+d x^4}+d x^2\right )}{d^{3/2}}}{4 b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^13/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]

[Out]

(b*x^2*Sqrt[c + d*x^4]*(d^(-1) + a^2/((-(b*c) + a*d)*(a + b*x^4))) + (a^(3/2)*(5*b*c - 4*a*d)*ArcTan[(Sqrt[b*c
 - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(b*c - a*d)^(3/2) - ((b*c + 4*a*d)*Log[d*x^2 + Sqrt[d]*Sqrt[c + d*x^4
]])/d^(3/2))/(4*b^3)

________________________________________________________________________________________

Maple [B]  time = 0.027, size = 953, normalized size = 5. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^13/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)

[Out]

1/4/b^2*x^2/d*(d*x^4+c)^(1/2)-1/4/b^2*c/d^(3/2)*ln(x^2*d^(1/2)+(d*x^4+c)^(1/2))-1/b^3*a*ln(x^2*d^(1/2)+(d*x^4+
c)^(1/2))/d^(1/2)-5/8*a^2/b^3/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x^2-(-a
*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d-b*c
)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))+5/8*a^2/b^3/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^
(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(
1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))+1/8*a^2/b^3/(a*d-b*c)/(x^2+(-a*b)^(1/2)/b)*((x^2+(-a*b)^(1/2
)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2)+1/8*a^2/b^4*d*(-a*b)^(1/2)/(a*d-b*c)/(-(a*
d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)
^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))+1/8*a^2/b^3/(a
*d-b*c)/(x^2-(-a*b)^(1/2)/b)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1
/2)-1/8*a^2/b^4*d*(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b
)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d-b*c)/
b)^(1/2))/(x^2-(-a*b)^(1/2)/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{13}}{{\left (b x^{4} + a\right )}^{2} \sqrt{d x^{4} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^13/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)

________________________________________________________________________________________

Fricas [A]  time = 4.94912, size = 2853, normalized size = 14.94 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(2*(a*b^2*c^2 + 3*a^2*b*c*d - 4*a^3*d^2 + (b^3*c^2 + 3*a*b^2*c*d - 4*a^2*b*d^2)*x^4)*sqrt(d)*log(-2*d*x^
4 + 2*sqrt(d*x^4 + c)*sqrt(d)*x^2 - c) + (5*a^2*b*c*d^2 - 4*a^3*d^3 + (5*a*b^2*c*d^2 - 4*a^2*b*d^3)*x^4)*sqrt(
-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^4 + a^2*c^2 + 4*((b^2
*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^6 - (a*b*c^2 - a^2*c*d)*x^2)*sqrt(d*x^4 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^8 +
2*a*b*x^4 + a^2)) + 4*((b^3*c*d - a*b^2*d^2)*x^6 + (a*b^2*c*d - 2*a^2*b*d^2)*x^2)*sqrt(d*x^4 + c))/(a*b^4*c*d^
2 - a^2*b^3*d^3 + (b^5*c*d^2 - a*b^4*d^3)*x^4), 1/16*(4*(a*b^2*c^2 + 3*a^2*b*c*d - 4*a^3*d^2 + (b^3*c^2 + 3*a*
b^2*c*d - 4*a^2*b*d^2)*x^4)*sqrt(-d)*arctan(sqrt(-d)*x^2/sqrt(d*x^4 + c)) + (5*a^2*b*c*d^2 - 4*a^3*d^3 + (5*a*
b^2*c*d^2 - 4*a^2*b*d^3)*x^4)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 -
 4*a^2*c*d)*x^4 + a^2*c^2 + 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^6 - (a*b*c^2 - a^2*c*d)*x^2)*sqrt(d*x^4 + c
)*sqrt(-a/(b*c - a*d)))/(b^2*x^8 + 2*a*b*x^4 + a^2)) + 4*((b^3*c*d - a*b^2*d^2)*x^6 + (a*b^2*c*d - 2*a^2*b*d^2
)*x^2)*sqrt(d*x^4 + c))/(a*b^4*c*d^2 - a^2*b^3*d^3 + (b^5*c*d^2 - a*b^4*d^3)*x^4), -1/8*((5*a^2*b*c*d^2 - 4*a^
3*d^3 + (5*a*b^2*c*d^2 - 4*a^2*b*d^3)*x^4)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^
4 + c)*sqrt(a/(b*c - a*d))/(a*d*x^6 + a*c*x^2)) - (a*b^2*c^2 + 3*a^2*b*c*d - 4*a^3*d^2 + (b^3*c^2 + 3*a*b^2*c*
d - 4*a^2*b*d^2)*x^4)*sqrt(d)*log(-2*d*x^4 + 2*sqrt(d*x^4 + c)*sqrt(d)*x^2 - c) - 2*((b^3*c*d - a*b^2*d^2)*x^6
 + (a*b^2*c*d - 2*a^2*b*d^2)*x^2)*sqrt(d*x^4 + c))/(a*b^4*c*d^2 - a^2*b^3*d^3 + (b^5*c*d^2 - a*b^4*d^3)*x^4),
1/8*(2*(a*b^2*c^2 + 3*a^2*b*c*d - 4*a^3*d^2 + (b^3*c^2 + 3*a*b^2*c*d - 4*a^2*b*d^2)*x^4)*sqrt(-d)*arctan(sqrt(
-d)*x^2/sqrt(d*x^4 + c)) - (5*a^2*b*c*d^2 - 4*a^3*d^3 + (5*a*b^2*c*d^2 - 4*a^2*b*d^3)*x^4)*sqrt(a/(b*c - a*d))
*arctan(-1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt(a/(b*c - a*d))/(a*d*x^6 + a*c*x^2)) + 2*((b^3*c*d
- a*b^2*d^2)*x^6 + (a*b^2*c*d - 2*a^2*b*d^2)*x^2)*sqrt(d*x^4 + c))/(a*b^4*c*d^2 - a^2*b^3*d^3 + (b^5*c*d^2 - a
*b^4*d^3)*x^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**13/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.08435, size = 238, normalized size = 1.25 \begin{align*} -\frac{a^{2} c \sqrt{d + \frac{c}{x^{4}}}}{4 \,{\left (b^{3} c - a b^{2} d\right )}{\left (b c + a{\left (d + \frac{c}{x^{4}}\right )} - a d\right )}} - \frac{{\left (5 \, a^{2} b c - 4 \, a^{3} d\right )} \arctan \left (\frac{a \sqrt{d + \frac{c}{x^{4}}}}{\sqrt{a b c - a^{2} d}}\right )}{4 \,{\left (b^{4} c - a b^{3} d\right )} \sqrt{a b c - a^{2} d}} + \frac{\sqrt{d x^{4} + c} x^{2}}{4 \, b^{2} d} + \frac{{\left (b c + 4 \, a d\right )} \arctan \left (\frac{\sqrt{d + \frac{c}{x^{4}}}}{\sqrt{-d}}\right )}{4 \, b^{3} \sqrt{-d} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")

[Out]

-1/4*a^2*c*sqrt(d + c/x^4)/((b^3*c - a*b^2*d)*(b*c + a*(d + c/x^4) - a*d)) - 1/4*(5*a^2*b*c - 4*a^3*d)*arctan(
a*sqrt(d + c/x^4)/sqrt(a*b*c - a^2*d))/((b^4*c - a*b^3*d)*sqrt(a*b*c - a^2*d)) + 1/4*sqrt(d*x^4 + c)*x^2/(b^2*
d) + 1/4*(b*c + 4*a*d)*arctan(sqrt(d + c/x^4)/sqrt(-d))/(b^3*sqrt(-d)*d)